Q_ Audited by

—CRED .

<" SHIELDS

CredShields

Smart Contract Audit

December 18th, 2025 « CONFIDENTIAL

Description

This document details the process and result of the Smart Contract audit performed by
CredShields Technologies PTE. LTD. on behalf of MWIN between December 11th, 2025, and
December 11th, 2025. A retest was performed on December 17th, 2025.

Author
Shashank (Co-founder, CredShields) shashank@CredShields.com

Reviewers
Aditya Dixit (Research Team Lead), Shreyas Koli(Auditor), Naman Jain
(Auditor), Sanket Salavi (Auditor), Prasad Kuri (Auditor), Neel Shah
(Auditor)

Prepared for
MWIN

mailto:shashank@CredShields.com

Table of Contents

Table of Contents

1. Executive Summary
State of Security
2. The Methodology ———————-
2.1 Preparation Phase
2.1.1Scope
2.1.2 Documentation
2.1.3 Audit Goals
2.2 Retesting Phase
2.3 Vulnerability classification and severity
2.4 CredShields staff
3. Findings Summary -—————————-
3.1Findings Overview
3.1.1Vulnerability Summary
4. Remediation Status ————————-
5. Bug Reports
Bug ID #L001[Won't Fix]
Outdated Pragma
Bug ID #G001[Won't Fix]
Public constants can be private

6. The Disclosure

O O W o o o o g1 o1 o1 61 &~ LA N

-— 2 —
;PN N D=2 0O

1. Executive Summary ----------———————o--

MWIN engaged CredShields to perform a smart contract audit from December 11th, 2025, to
December 11th, 2025. During this timeframe, Two (2) vulnerabilities were identified. A retest was

performed on December 17th, 2025, and all the bugs have been addressed.

During the audit, Zero (0) vulnerabilities were found with a severity rating of either High or Critical.
These vulnerabilities represent the greatest immediate risk to "MWIN" and should be prioritized for

remediation, and fortunately, none were found.

The table below shows the in-scope assets and a breakdown of findings by severity per asset.

Section 2.3 contains more information on how severity is calculated.

Assets in Scope -- Medium Low info Gas 2

MetaWinToken Contract 0 0] 0 1 0 1 2

0 0 0 1 0 1 2

Table: Vulnerabilities Per Asset in Scope

The CredShields team conducted the security audit to focus on identifying vulnerabilities in Smart

Contract's scope during the testing window while abiding by the policies set forth by MWIN's team.

State of Security

To maintain a robust security posture, it is essential to continuously review and improve upon
current security processes. Utilizing CredShields' continuous audit feature allows both MWIN's
internal security and development teams to not only identify specific vulnerabilities but also gain a

deeper understanding of the current security threat landscape.

To ensure that vulnerabilities are not introduced when new features are added, or code is
refactored, we recommend conducting regular security assessments. Additionally, by analyzing the
root cause of resolved vulnerabilities, the internal teams at MWIN can implement both manual and
automated procedures to eliminate entire classes of vulnerabilities in the future. By taking a

proactive approach, MWIN can future-proof its security posture and protect its assets.

2. The Methodology --------------———---

MWIN engaged CredShields to perform a Smart Contract audit. The following sections cover how

the engagement was put together and executed.

2.1 Preparation Phase

The CredShields team meticulously reviewed all provided documents and comments in the smart
contract code to gain a thorough understanding of the contract's features and functionalities. They
meticulously examined all functions and created a mind map to systematically identify potential
security vulnerabilities, prioritizing those that were more critical and business-sensitive for the
refactored code. To confirm their findings, the team deployed a self-hosted version of the smart

contract and performed verifications and validations during the audit phase.

A testing window from December 11th, 2025, to December 11th, 2025, was agreed upon during the

preparation phase.

2.1.1Scope
During the preparation phase, the following scope for the engagement was agreed upon:

IN SCOPE ASSETS

https://etherscan.io/address/0x289bbDBe9ACO6F6837bE7c84393d41E5a6297ED7

2.1.2 Documentation

Documentation was not required as the code was self-sufficient for understanding the project.

https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7

2.1.3 Audit Goals

CredShields employs a combination of in-house tools and thorough manual review processes to
deliver comprehensive smart contract security audits. The majority of the audit involves manual
inspection of the contract's source code, guided by OWASP's Smart Contract Security Weakness
Enumeration (SCWE) framework and an extended, self-developed checklist built from industry best
practices. The team focuses on deeply understanding the contract's core logic, designing targeted
test cases, and assessing business logic for potential vulnerabilities across OWASP's identified

weakness classes.

CredShields aligns its auditing methodology with the OWASP Smart Contract Security projects,

including the Smart Contract Security Verification Standard (SCSVS), the Smart Contract
Weakness Enumeration (SCWE), and the Smart Contract Secure Testing Guide (SCSTG). These
frameworks, actively contributed to and co-developed by the CredShields team, aim to bring
consistency, clarity, and depth to smart contract security assessments. By adhering to these
OWASP standards, we ensure that each audit is performed against a transparent,
community-driven, and technically robust baseline. This approach enables us to deliver structured,
high-quality audits that address both common and complex smart contract vulnerabilities

systematically.

2.2 Retesting Phase

MWIN is actively partnering with CredShields to validate the remediations implemented towards

the discovered vulnerabilities.

2.3 Vulnerability classification and severity

CredShields follows OWASP's Risk Rating Methodology to determine the risk associated with
discovered vulnerabilities. This approach considers two factors - Likelihood and Impact - which are

evaluated with three possible values - Low, Medium, and High, based on factors such as Threat

https://scs.owasp.org/

agents, Vulnerability factors, and Technical and Business Impacts. The overall severity of the risk is

calculated by combining the likelihood and impact estimates.

Overall Risk Severity

HIGH Medium ® High @ Critical
MEDIUM Low Medium @ High
Impact
LOW None Low Medium
LOW MEDIUM HIGH
Likelihood

Overall, the categories can be defined as described below -

1. Informational
We prioritize technical excellence and pay attention to detail in our coding practices. Our
guidelines, standards, and best practices help ensure software stability and reliability.
Informational vulnerabilities are opportunities for improvement and do not pose a direct
risk to the contract. Code maintainers should use their own judgment on whether to

address them.

2. Low

Low-risk vulnerabilities are those that either have a small impact or can't be exploited
repeatedly or those the client considers insignificant based on their specific business

circumstances.

3. Medium

Medium-severity vulnerabilities are those caused by weak or flawed logic in the code and

can lead to exfiltration or modification of private user information. These vulnerabilities

can harm the client's reputation under certain conditions and should be fixed within a

specified timeframe.

4. High
High-severity vulnerabilities pose a significant risk to the Smart Contract and the
organization. They can result in the loss of funds for some users, may or may not require
specific conditions, and are more complex to exploit. These vulnerabilities can harm the
client's reputation and should be fixed immediately.

5. Critical
Critical issues are directly exploitable bugs or security vulnerabilities that do not require
specific conditions. They often result in the loss of funds and Ether from Smart Contracts
or users and put sensitive user information at risk of compromise or modification. The
client's reputation and financial stability will be severely impacted if these issues are not
addressed immediately.

6. Gas
To address the risk and volatility of smart contracts and the use of gas as a method of
payment, CredShields has introduced a "Gas" severity category. This category deals with
optimizing code and refactoring to conserve gas.

2.4 CredShields staff

The following individual at CredShields managed this engagement and produced this report:

Shashank, Co-founder CredShields shashank@CredShields.com

Please feel free to contact this individual with any questions or concerns you have about the

engagement or this document.

3. Findings Summary -------------------

This chapter contains the results of the security assessment. Findings are sorted by their severity
and grouped by asset and OWASP SCWE classification. Each asset section includes a summary
highlighting the key risks and observations. The table in the executive summary presents the total
number of identified security vulnerabilities per asset, categorized by risk severity based on the

OWASP Smart Contract Security Weakness Enumeration framework.

3.1Findings Overview

3.1.1Vulnerability Summary

During the security assessment, Two (2) security vulnerabilities were identified in the asset.

VULNERABILITY TITLE SEVERITY SCWE | Vulnerability Type

Outdated Pragma Low Outdated Compiler Version
(SCWE-061)

Public constants can be private Gas Gas Optimization
SCWE-082

Table: Findings in Smart Contracts

https://scs.owasp.org/SCWE/SCSVS-CODE/SCWE-061/
https://scs.owasp.org/SCWE/SCSVS-DEFI/SCWE-082/

4. Remediation Status ---------——-----—-

MWIN is actively partnering with CredShields from this engagement to validate the discovered
vulnerabilities' remediations. A retest was performed on December 17th, 2025, and all the issues

have been addressed.

Also, the table shows the remediation status of each finding.

VULNERABILITY TITLE SEVERITY REMEDIATION STATUS

Outdated Pragma Low Won't Fix
[December 17th, 2025]

Public constants can be private Gas Won't Fix
[December 17th, 2025]

Table: Summary of findings and status of remediation

5. Bug Reports ----------————————————-

Bug ID #L001[Won't Fix]

Outdated Pragma

Vulnerability Type
Outdated Compiler Version (SCWE-061)

Severity
Low

Description

The smart contract is using an outdated version of the Solidity compiler specified by the pragma
directive i.e. 0.8.28. Solidity is actively developed, and new versions frequently include important
security patches, bug fixes, and performance improvements. Using an outdated version exposes
the contract to known vulnerabilities that have been addressed in later releases. Additionally,
newer versions of Solidity often introduce new language features and optimizations that improve
the overall security and efficiency of smart contracts.

Affected Code

e https://etherscan.io/address/0x2893bbDBe3ACOBFE837bE7c84393d41E5a6237ED7#code#
F1#L3

Impacts

The use of an outdated Solidity compiler version can have significant negative impacts. Security
vulnerabilities that have been identified and patched in newer versions remain exploitable in the
deployed contract.

Furthermore, missing out on performance improvements and new language features can result in
inefficient code execution and higher gas costs.

Remediation
It is suggested to use the 0.8.29 pragma version.
Reference: https://scs.owasp.org/SCWE/SCSVS-CODE/SCWE-061/

Retest

https://scs.owasp.org/SCWE/SCSVS-CODE/SCWE-061/
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L3
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L3
https://swcregistry.io/docs/SWC-103
https://scs.owasp.org/SCWE/SCSVS-CODE/SCWE-061/

Client's comment: Solidity 0.8.28 is a stable and supported compiler release with no known security
vulnerabilities impacting this contract. No specific compiler-level issue, CVE, or Solidity advisory
relevant to 0.8.28 has been identified.

Bug ID #G001[Won't Fix]

Public constants can be private

Vulnerability Type
Gas Optimization (SCWE-082)

Severity
Gas

Description

Public constant variables cost more gas because the EVM automatically creates getter functions
for them and adds entries to the method ID table. The values can be read from the source code
instead.

Affected Code

e https://etherscan.io/address/0x289bbDBe9ACOBFB6837bE7c84393d41E5a6297ED7H#code#
F1#L9

e https://etherscan.io/address/0x289bbDBe9ACOBF6837bE7c84393d41E5a6297ED7#code#
F1#L10

e https://etherscan.io/address/0x289bbDBe3ACOBF6837bE7c84393d41E5a6297ED7#code#
F1#L11

e htips://etherscan.io/address/0x289bbDBe9ACO6F6837bE7c84393d41E5ab297ED7#code#
F1#L12

e https://etherscan.io/address/0x283bbDBe3ACOBF6837bE7c84393d41E5a62937ED7#code#
F1#L13

Impacts
Public constants are more costly due to the default getter functions created for them, increasing
the overall gas cost.

Remediation
If reading the values for the constants is not necessary, consider changing the public visibility to
private.

Retest
Client's comment: The constants are intentionally declared public to provide on-chain getter
functions for tokenomics transparency and ease of integration.

https://scs.owasp.org/SCWE/SCSVS-DEFI/SCWE-082/
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L9
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L9
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L10
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L10
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L11
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L11
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L12
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L12
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L13
https://etherscan.io/address/0x289bbDBe9AC06F6837bE7c84393d41E5a6297ED7#code#F1#L13

6. The Disclosure --—-————————— -

The Reports provided by CredShields are not an endorsement or condemnation of any specific
project or team and do not guarantee the security of any specific project. The contents of this
report are not intended to be used to make decisions about buying or selling tokens, products,

services, or any other assets and should not be interpreted as such.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical risk and
uncertainty. CredShields does not provide any warranty or representation about the quality of
code, the business model or the proprietors of any such business model, or the legal compliance of
any business. The report is not intended to be used as investment advice and should not be relied

upon as such.

CredShields Audit team is not responsible for any decisions or actions taken by any third party

based on the report.

Your Secure Future Starts Here

%2 CRED

SHIELDS

At CredShields, we're more than just auditors. We're your
strategic partner in ensuring a secure Web3 future. Our
commitment to your success extends beyond the report,
offering ongoing support and guidance to protect your digital
assets

Q_ Audited by

cCRED ..

' SHIELDS

20A TANJONG PAGAR ROAD, SINGAPORE (088443) info@credshields.com

	Table of Contents
	
	
	
	1. Executive Summary ---------------------
	
	
	
	
	
	State of Security

	
	2. The Methodology -------------------
	
	2.1 Preparation Phase
	2.1.1 Scope
	2.1.2 Documentation
	2.1.3 Audit Goals

	2.2 Retesting Phase
	2.3 Vulnerability classification and severity
	2.4 CredShields staff

	
	3. Findings Summary -------------------
	3.1 Findings Overview
	3.1.1 Vulnerability Summary

	
	4. Remediation Status -----------------
	
	5. Bug Reports ----------------------
	Bug ID #L001 [Won’t Fix]
	Outdated Pragma

	Bug ID #G001 [Won’t Fix]
	Public constants can be private

	6. The Disclosure ---------------------

